02.08.2019

Neues 3D-Modell der Leber

Ein neuartiges, naturgetreues 3D-Modell der Leber haben Forschende zweier Max-Planck-Institute und der TU Dresden anhand computergestützter Bildanalyse und 3D-Geweberekonstruktionen erstellt.

Foto: Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG)

Den Grundstein für die strukturelle Analyse des Lebergewebes von Säugetieren legte der Anatom Hans Elias 1949: Er entwickelte ein von Hand gezeichnetes Modell der Leberläppchen, das bis heute in Lehrbüchern verwendet wird. Fast 70 Jahre später nutzten Forscher des Max-Planck-Instituts für molekulare Zellbiologie und Genetik, des MPI für Physik komplexer Systeme und der TU Dresden innovative mikroskopische Entwicklungen, computergestützte Bildanalyse und 3D-Geweberekonstruktionen und erstellten ein neues realistisches 3D-Modell der Leber. Erstaunlicherweise entdeckten sie dabei auch, dass die Leber eine organisierte Struktur ähnlich der von Flüssigkristallen aufweist (siehe eLife 2019, Band 8, Seite: e44860).

Die Leber ist das größte Stoffwechselorgan des menschlichen Körpers mit einer komplexen Gewebearchitektur. Diese ist unerlässlich für die Entgiftung des Blutes und den Stoffwechsel. Das Blut fließt über Blutgefäße zu den Leberzellen, den sogenannten Hepatozyten, die Nährstoffe aufnehmen und umwandeln und Galle produzieren, die dann in den Darm gelangt. Wie jedoch beeinflussen sich Zellen untereinander und wie organisieren sie sich, um ein funktionierendes Gewebe zu bilden? Um das zu verstehen, muss man die dreidimensionale Struktur kennen. Die Architektur von Geweben und deren Einfluss auf die Funktion des Gewebes sind heute noch wenig verstanden. Ein interdisziplinäres Team aus Biologen, Physikern und Mathematikern am MPI-CBG, MPI-PKS und an der TU Dresden wollte daher ein neues Modell der Leber entwickeln, das erklären kann, wie Zellen kollektiv Lebergewebe und damit ein gesundes Organ bilden.

Die Dresdner Forscher rekonstruierten computergestützt die dreidimensionale Geometrie des Gewebes aus mikroskopischen Aufnahmen der Mausleber und analysierten es unter Anwendung physikalischer Konzepte. Obwohl Lebergewebe eher ungeordnet erscheint, fanden die Forscher überraschenderweise, dass die Hepatozyten in ihrer Anordnung Flüssigkristallen ähneln, die unter anderem in elektronischen Displays verwendet werden. Flüssigkristalle sind weniger strukturiert als Kristalle, aber organisierter als Moleküle in einer Flüssigkeit. Hernán Morales-Navarrete, Postdoktorand im Labor von MPI-CBG-Direktor Marino Zerial, erklärt: „Unsere Ergebnisse deuten darauf hin, dass Leberzellen und Sinusoide, die kleinsten Blutgefäße im Körper, in beide Richtungen miteinander kommunizieren: Die Blutgefäße geben den Hepatozyten Anweisungen und die Hepatozyten senden Signale an die Blutgefäße zurück, um die Flüssigkristall-Anordnung herzustellen und zu erhalten. Diese beidseitige Kommunikation ist ein zentraler Bestandteil der Selbstorganisation des Lebergewebes.“ Eine solche Architektur verleiht dem Gewebe Funktion und Widerstandsfähigkeit gegenüber lokalen Schäden.

Marino Zerial, der auch dem Zentrum für Systembiologie Dresden (CSBD) angehört, fasst zusammen: „Wir haben neue Prinzipien der Struktur und Organisation von Lebergewebe entdeckt. Nur wenn wir verstehen, wie Lebergewebe gebildet wird und daraus ein funktionierendes Organ entsteht, können wir Anomalien und Fehlfunktionen beim Menschen besser erkennen. Darüber hinaus bietet unsere Studie auch eine allgemeine Grundlage, um die Interaktion von Zellen und ihre Organisation in Gewebe besser zu verstehen“.

Quelle: Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG)

© Internisten-im-Netz

Impressum

Datenschutz

Bildquellen

Kontakt

Herausgeber

Berufsverband Deutscher Internisten e.V.